Hexadecimal Numbers

Think about colour codes:

\#2BFF36

These are written using hexadecimal

Hexadecimal Numbers

Hex colour codes are made up of three different values: Red - Green - Blue

\[

\]

Each represents a value between 0 and 255

Hexadecimal Numbers

\#2BFF36

2B FF 36

RGB Sliders	$\hat{*}$
Red	
0	43
Green	
	255
Blue	
-	54
Hex Color \#	2BFF36

Hexadecimal Numbers

Hexadecimal uses base 16

Each "number" goes from 0 to 15

16 s	1 s
3	4

$=(3 \times 16)+(4 \times 1)$
2 hex digits represent 0 to 255 (FF)

Hexadecimal Numbers

Letters are used to represent the numbers 10 to 15.
$10=\mathrm{A}$
$3 D=(3 \times 16)+(13 \times 1)$
$11=B$
$12=C$
$13=D$
$A 3=(10 \times 16)+(3 \times 1)$
$7 \mathrm{~F}=$
$14=E$
$15=F$

$$
23=
$$

Hexadecimal Numbers

Important:

Hexadecimal is used by people, not by computers

Computers just use binary to store:

1. all data
2. all instructions

Hexadecimal Numbers

Important:

- $\mathrm{FF}=15 \times 16+15=255$
- $F F$ is the same as 11111111

Important:

- FF is stored in the computer as 11111111 using 8 bits
- FF uses the same storage of 11111111

Hexadecimal Numbers

Reasons for using hexadecimal:

1. long binary numbers are hard for humans to read - hex is easier to read
2. 2 hex digits (FF) represent one Byte (11111111) - so writing binary numbers in hex is simple
3. it's easy to convert from hex to binary because binary "magic numbers" also come up in hex

Hexadecimal Numbers

"Magic numbers":

- $\mathrm{F}=15=1111$ (4 bits)
- $\mathrm{FF}=255=11111111$ (8 bits)
- $\operatorname{FFF}=4,096=111111111111$ (12 bits)
- $\operatorname{FFFF}=65,535=1111111111111111$ (16 bits)

