Image file calculations

Images are stored as bitmaps - grids of individual pixels

A pixel is a single point in a graphical image - a picture element

Each pixel is encoded with data about the colour to create a number

The number of bits used for each colour is the colour depth

Image file calculations

The image size in pixels is the width times the height
image size $=$ width x height

Image file calculations

The greater the colour depth the larger the file size
file size $=$ width \mathbf{x} height \mathbf{x} colour depth

- Black and white $=1$ bit colour depth
- 8 colours $=3$ bit colour depth

Image file calculations

size in bits $=$ width x height x colour depth
size in Bytes $=($ width x height x colour depth) $/ 8$

- Pixel Dimensions: 16.1 M

Width: 1944 pixels
Height: 2896 pixels

- Document Size:

\square Scale Styles
\checkmark Constrain Proportions
\square Resample Image:

Image size in bits?
 Colour depth is 24 bits per pixel (standard JPG)

Image file calculations

size in bits $=$ width x height x colour depth
=

Image file calculations

size in bits $=$ width x height x colour depth

$$
\begin{aligned}
& =1944 \times 2896 \times 24 \\
& =
\end{aligned}
$$

Image file calculations

size in bits $=$ width x height x colour depth

$$
\begin{aligned}
& =1944 \times 2896 \times 24 \\
& =135,115,776 \text { bits }
\end{aligned}
$$

Image file calculations

size in Bytes $=($ width x height x colour depth) $/ 8$

$$
\begin{aligned}
& =135,115,776 / 8 \\
& =
\end{aligned}
$$

Image file calculations

size in Bytes $=($ width x height x colour depth) $/ 8$

$$
\begin{aligned}
& =135,115,776 / 8 \\
& =16,889,472 \text { Bytes }
\end{aligned}
$$

How many KiloBytes? MegaBytes? GigaBytes?

