More Image file calculations

Images are stored as bitmaps - grids of individual pixels

A pixel is a single point in a graphical image - a picture element

Each pixel is encoded with data about the colour to create a number

The number of bits used for each colour is the colour depth

More image file calculations

Key formulae:

$$
\text { image size }=\text { width } x \text { height }
$$

size in bits $=$ width x height x colour depth size in Bytes $=($ width x height x colour depth $) / 8$

More image file calculations

The exam board loves questions like this:
Q. The image shows a black and white bitmap

What is the size of the image file on the computer?

More image file calculations

A variation:

Q. The image shows a black and white bitmap

Explain why 36 bits are needed to represent the image

More image file calculations

Then they do this:
Q. The image shows a black and white bitmap How many bits would be needed to represent the image if it used 5 colours rather than 2?

More image file calculations

The problem:
The answer isn't $6 \times 6 \times 5$

Think: how many bits do you need to represent each colour if there are 5 different colours?

More image file calculations

5 colours $=$ the numbers from 0 to 4

What binary numbers will we need for this?

More image file calculations

5 colours $=$ the numbers from 0 to 4
What binary numbers will we need for this? $000,001,010,011$ and 100 will all be needed

So, we need 3 bits - the colour depth is 3 bits to represent 5 colours

I know... This is tricky

More image file calculations

How many bits would be needed to represent the image if it used 5 colours rather than 2?
file size $=$ width x height x colour depth

$$
\begin{aligned}
& =6 \times 6 \times 3 \\
& =36 \times 3 \\
& =108 \text { bits }
\end{aligned}
$$

More image file calculations

Тгу some more:
How many bits would be needed to represent the image if it used 3 colours?

How many bits would be needed to represent the image if it used 8 colours?

How many bits would be needed to represent the image if it used 12 colours?

More image file calculations

Тгу some more:
How many bits would be needed to represent the image if it used 3 colours? $(6 \times 6 \times 2=72)$

How many bits would be needed to represent the image if it used 8 colours? $(6 \times 6 \times 3=108)$ How many bits would be needed to represent the image if it used 12 colours? $(6 \times 6 \times 4=144)$

More image file calculations

How about this:
How many Bytes would be needed to represent the image if it used 256 colours?

More image file calculations

How about this:
How many Bytes would be needed to represent the image if it used 256 colours?

256 colours is 8 bit colour depth (0 to 255)
$=6 \times 6 \times 8$ bits $=288$ bits
= 288/8 Bytes
$=36$ Bytes

