Representing images

All data stored in a computer is stored as binary numbers.

This means that images need to be stored as numbers. There needs to be a way to break the image down into small parts and then a way to represent each part as a number.

Representing images

Images are split into a grid of pixels

This allows each pixel to be given a numerical value to encode it

A pixel is a single point in an image - a Picture Element

Representing images

The grid of pixels is
called a bitmap
Each pixel in the bitmap can be encoded using binary bits

This bitmap is 8×8 pixels $=64$ pixels

Representing images

The image size in pixels is the width times the height
image size $=$ width x height

Representing images

Black and white bitmaps have two possible colours per pixel

So each pixel takes 1 binary bit to represent it

Generally:

- 0 = black
- 1 = white

Representing images

The first row of this bitmap is encoded as:

 11000011The third row is encoded as:

01011010

Representing images

When you add colour to a bitmap you need more than 1 bit to encode each pixel

For example, if you use 4 bits per pixel, you have 16 different colours (4 bits is 0 to $15=16$ numbers)

The number of bits used to encode each pixel of a bitmap is called the colour depth

Representing images

The more colours
you encode the more bits are needed for each pixel and the greater the colour depth

This makes files
bigger, but images more realistic

Representing images

Standard JPG images use $\mathbf{2 4}$ bit colour depth:

- 8 bits for red
- 8 bits for green
- 8 bits for blue

Example hex code:
\#FF5733

We use hex codes to write these because they're easier for humans to use than using binary but clearer (and less prone to error) than using decimal

Representing images

The greater the colour depth the larger the file size.

file size $=$ width \mathbf{x} height x colour depth

- 1 bit colour depth = black and white only
- 3 bit colour depth $=8$ colours
- 24 bit colour depth = c. 16.7 million colours

